Langsung ke konten utama

PERSAMAAN DIFFERENSIAL VARIABEL TERPISAH (LANJUTAN)


Tidak semua PD mudah untuk didapatkan solusinya. Pada saat PD memiliki bentuk f1(x)g2(y) dy + f2(x)g1(y) dy = 0, maka yang dibutuhkan reduksi dengan menggunakan faktor integrasi 1/g1(y)f2(y), yang kemudian akan menjadi:
Pengintegrasian masing-masing ruas:
Contoh:
Tentukan solusi umum  dari persamaan differensial
(x3y + yx2) dx + (y3x2 + 2x2y) dy = 0
Penyelesaian: 
Karena sudah memiliki variable yang sama, lamgkah selanjutnya adalah integralkan.
Untuk lebih mudah dalam memahaminya, silahkan jawab beberapa soal dibawah ini
Tentukan solusi umum  dari persamaan differensial berikut:








Komentar

Postingan populer dari blog ini

PERSAMAAN DIFFRENSIAL HOMOGEN

Assalamualaikum warahmatullahi wabarakathu... Jumpa lagi diblog saya, kali hari kita akan membahas materi baru yaitu Persamaan Diffrensial Homogen Definisi: Ciri umum PD Homogen adalah tiap suku derajatnya sama. Contoh :   PD homogen memiliki bentuk persamaan 𝑀 𝒙 , 𝒚 𝒅𝒙 + 𝑵 𝒙 , 𝒚 𝒅𝒚 = 0 Atau disebut persamaan diferensial homogen orde satu, jika M dan N adalah fungsi homogen yang berderajat sama, atau f fungsi homogen berderajat nol. Untuk menyelesaikan persamaan tersebut itu menggunakan metode subtitusi Dengan substitusi ini, persamaan diferensialnya akan menjadi suatu persamaan diferensial peubah terpisah. Dari 𝒚 ′ = 𝒇 ( 𝒙 , 𝒚 ), dengan fungsi f homogen berderajat nol. Selanjutnya substitusikan ke persamaan diferensialnya, akan diperoleh : Mungkin itu saya bisa bagikan... Untuk masalah contoh soal, tunggu pembahasan selanjutnya...

PERSAMAAN DIFFERENSIAL KOEFISEIN LINEAR (LANJUTAN)

PERSAMAAN DIFFERENSIAL KOEFISEIN LINEAR (LANJUTAN) Assalamu'alaikum Warahmatullahi Wabarakaatuh. ..        Hari ini kita akan membahas contoh soal yang merupakan kelanjutan materi sebelumnya... 1.      Selesaikan persamaan diferensial berikut. Penyelesaian:   Persamaan diferensial di atas merupakan persamaan diferensial linear orde satu. Diketahui   2.      Selesaikan persamaan   diferensial berikut.  Penyelesaian: 3.      Tentukan penyelesaian PD Penyelesaian: Persamaan diferensial yang diberikan itu berbentuk PD linear orde satu, yang dapat ditulis: 4.      Tentukan determinan Wronski (Wronskian) untuk fungsi { x, x 2 , x 3 } Penyelesaian: kita juga dapat menghitung determinan Wronski-nya, yaitu: terbukti bahwa Wronskian =0 berarti himpunan fungsi {1 - x,...

PERSAMAAN DIFFERENSIAL FAKTOR INTEGRAL (Lanjutan)

Assalamualaikum warahmatullahi wabarakatu... Duh, kemarin lupa ngasih contoh soal jadi ini kita bahas contoh aja dulu... hehehe... Contoh Soal : 1.         𝟒𝒙𝒚  +  𝟑𝒚   𝟐  −  𝒙   𝒅𝒙  +  𝒙   𝒙  +  𝟐𝒚   𝒅𝒚  =  𝟎 Penyelesaian :   Misal : Selanjutnya diperoleh PD Eksak sebagai berikut : 𝒙   𝟐   𝟒𝒙𝒚  +  𝟑𝒚   𝟐  −  𝒙   𝒅𝒙  +  𝒙   𝟑   𝒙  +  𝟐𝒚   𝒅𝒚  =  0 Karena PD tersebut sudah berbentuk PD Eksak, maka dapat digunakan Penyelesaian PD Eksak. 2.         𝒚 ( 𝒙 +  𝒚  +  𝟏 ) 𝒅𝒙  +  𝒙  ( 𝒙  +  𝟑 𝒚 )  +  𝟐   𝒅𝒚  =  𝟎 Penyelesaian : Misal : Sehingga FI adalah : Selanjutnya diperoleh PD Eksak sebagai berikut : 𝒚...